Resonant Transfer Excitation of Fluorine-Like Mo³³⁺ Ion

Hassan Ramadan^a and Sabbah Elkilany^b

- ^a Department of Basic Sciences, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
- b Department of Mathematics, Faculty of Science, Kafr El-sheikh University, Kafr El-sheikh, Egypt

Reprint requests to H. R.; E-mail: hramadan@eun.eg

Z. Naturforsch. **65a**, 599 – 605 (2010); received January 7, 2009 / revised September 16, 2009

Dielectronic recombination (DR) cross sections ($\overline{\sigma}^{DR}$) and rate coefficients (α^{DR}) for Mo³³⁺ are calculated using the angular momentum average scheme (AMA). Moreover, the resonant transfer excitation followed by X-ray emission (RTEX) cross sections (σ^{RTEX}) for the collision of Mo³³⁺ with H₂ and He targets are calculated and studied. The calculations of the cross sections are performed for both K- and L-shell excitations. A smooth change with the temperatures for α^{DR} is found for all kinds of excitations. The rates for K-shell excitation are very small in comparison with the rates for L-shell excitation. The RTEX cross sections for Mo³³⁺ ions are obtained from their corresponding DR cross sections by the method of folding in the impulse approximation (IMA). σ^{RTEX} for the K-shell excitation shows two overlapped peaks which may be attributed to the two groups in this excitation process. The present calculations are considered as a database for future comparison with theoretical and experimental data using other coupling schemes. Multiple Auger channels are complicating the dependence of the cross sections on principal quantum numbers.

Key words: Atomic Data; Atomic Processes.